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ABSTRACT

A transverse degree of freedom is introduced in the Toda lattice, The corresponding continuum

approximations are discussed.

INTROUDUCTION

Orm of the few integrable discrete systems is the nonlinear spring and mass chain introduced by

Toda [1]. Its intcgrability was demonstrated by Flwchka [2] and effective analytical tcchniqlm

bud on the spectral transform was de~eloped subsequently [3]. Many thcmretical &ncinumerical

studies of pcrturbd Toda Iattlces have been reported, see [4] e.g.. Recently, the Toda Iattlce has

been applied to model the propagation of longitudinal waves along DNA [5]. Solitons were fouml to

form spontaneously at physiological temperatures. In a more realistic Inodcl of DNA also

transvcrsp dc.grrwsof freedom [nust bc t~kcn Into gccouut. Thus a two chain model of I)NA W*M
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treated by statistical mechanics methods in [6] with Morse potentials representing the H-bonds in

the base pairs. Here, m a first step, we formulate the Toda iattice model for one strand with a

transverse degree of freedom. The continuum approximations of the resulting equations and their

solutions are investigated. Computer studies of the lattice dynamics will be presented elsewhere.

FORMULATION OF THE hlODEL

We consider a one-dimensional lattice with lattice constant t and N lattice points. At each

!attice point we place identical masses (base pairs), m. The longitudinal arid transverse

displacements from the ~uilibrium powtions are given by yi, yn, . I ● , yN and vi, V2, “ “ “ , VN,

respectively. In the case of a circular arrangement of the N mmes (corresponding to a circular

DNA molecule) we get the periodic boundary conditions for the displacements as function of time,

t,

yn+N(t)=Yn(t)t‘n+N(t) = Vn(t), n = 1, 2, “ “ 0, N ,
(1)

The elongation (or compression) of the spring connecting the n’th and (n+ 1)’th maws is given by

rn = [(4+ Yn+~ - Yn)2 + (-ip+~- Vn)qt - t .

r = O when the length of the spring is equal to the lattice constant.n

elongation of the spring connecting the 1st and the N’th masses. The

V(m, = ~ [exp (-brn) + J] + arn ,

(2)

Note that r. = rN is the

Toda potential [1] is given by

(3)

where a and b are constants. The Hamiltonian for the Toda chain becomes

N

(4)

n=l

where dot denotes differentiation with respect to I.ime, The dynamical equations become

& &n_l
m~n = - V’(m, # - V’(r )

n n-1 ~

Ald

Illv,, = - V’(ril) # - V’(rI,-,) * .
n n

‘1’lwrcRrc two dmndmistlc kmgths In the IIIOM, # d I/t), rind wc shall

h. Furlhcrmorc, we introduce the IIIMSdusity p = m/(. A clmractcristic

I’mramctm values for I)NA [5] Arc giwm in Thhlc 1,



f = 3.4 x 10-10

a = 5.13 x 10-’0N

b = 6.18 x 1010 m-l

m= 1.282 X 10-24 kg

Table 1. Parameter valum [or DNA [5].

It is convenient to introduce the longitudinal and transverse strains

(a Un = (yn+~ - Yn)/~ (6a)

and

CTWn = (Vn+l - vn)/t , (6b)

where c is an indicator of smaln~s. We shall consider asymptotic expansions of Eq, (5) for small

elongations in four cases:

i) longitudinal strain larger than transverse strain (a = 1, ~ = 2)

ii) longitudinal and transverse strain of same order of magnitude (a = ~ = 1)

Ii!) longitudinal strain smaller than transverse strain (a = 2, -y= 1)

iv) longitudinal strain much smaller than transverse strain (a = 3, 7 = 1).

The resulting equations have the form

ptq =U
an n+l - 2un + Un-, (7a)

and

y ?~+w=w
n n+l - 2wn + Wn ~ (7b)

with

Un s (1 - exp(- brn)) (1 - c27w#/2) (7C)

and

Wn = P(l - cxp(-brll)) Wn , (7(!)

In the case where not only m/C e 1, but also rn b = /l rn/~ c 1 wc may truncate the ‘[’h

potent I&l to

and arrlvc at

[

(llr,,)2 (hrl,)fi

T--T 1
the IIousslncsq RI)~)roXiltliltlot)S” giww in ‘1’llblc2.
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Table 2. Asymptotic expansions of Un and Wn (Eq. (7)) for small longitudinal!

and transverse excitations.

CONTINUUM APPROXIMATIONS

In order to derive continuum approximations for the lattice equations (74) we follow Collins

[7] and F@enau and Hyman [8]. These authors developed ideas by Kruskal and Zabusky [9] and

showd that

(9)

Here T is a nonlinear function of fn(t) + f(x,t) with x = nt in the continuum limit n ~ CO,~ ● 0.

Identifying T(fn) with Un and Wn in Eq, (7) obtain the following continnum approximations for

the longitudinal and transverse stains, u(x,t) and w(x,t), in the four cues:

(lOa)

(lob)

(ha)

(Ilb)

(Ih)

(121))



and

iv) 2 u gi*u~ (\V*)M + $ Uxx+ ~ ~ JLxlt
a tt=2

(13a)

(13b)

Here we have kept terms of order c and C*in Eqs. (10-12), and terms of ordel c, ~2, and C3in IZq.

(13),and then omitted the ~’s. In all four cases w(x,t) can be replaccu by -w(x,t]. The

longitudinal strain, u(x,t), does not have this symmetry property.

ON THE SOLUTIONS

In case i) the longitudinal field and the transverse fields decouple. u(x,t) satisfies (10a) which is

the improved Boussinesq equation [9]. In the solitonic limit (of infinite pericdicity interval and

finite velocity) the traveling wave solution to this equation becomes

U(x,t) = -$ (s2-1) sech2 q~ [.-s~t-xo] ~

This compressional travels with the supersonic velocity, s~/~ (s > 1), ~ being the sound

velocity (= 1.69 x 103 m/s for DNA).

Eq. (lOb) with the periodicity condition

W(x,t) =w(x+jL, t) j=l,2, ”’. , (15)

when L = N ●/, has the trivial solution

W(x,t) = cosh [q [x-i]] ‘(t) (16)

for j = 1. Here T(t) is an arbitrary function of time, Thus the transverse strain is a standing

wave.

In w) where the longitudinal and transverse strains are of the same order of magnitude wc

irwcstigate the ansatz

w =Au+l] or u= w/A - 13/A (17R,t))

where A and II nrc constmts. i!qs, ( 1la) and ( 1lb) ijccornc idcntiral if wc choose

A=*~al~dll= F~/(l+iJ) i (l~a,h)

‘1’hcrwuiti:lg cquatirm is

(I!h)



For infinite periodicity interval we find the travellirg wave solulion

‘(”t)=+ [1 + ; (S2-1) sech2 +[.-smt-.o]]

or

W(x,t) = ●
9~ ~ (s2-1)sech’@[x-sJ*t-xo] ~

(19b)

(20a)

(20b)

from the uncoupled solitary wave (14) by beingThe longitudinal solitary wave (20a) differs

elongated instead of compressional, by existing as a superposition to the constant elongation

(l+ fl)-l (like a “dark soliton” in the terminology of optical solitons), and by having a velocity,

s~~, which mtiy be smaller than the sound velocity (for 1 < s e 1.024 in the case of DNA

where ~ = 21). Thus the ansatz (17) that the longitudinal and transverse strains travel together

(with the same velocity) maka this hybrid wave travel slower than the uncoupled longitudinal

strain wave by a factor ~ and faster than the uncoupled transverse strain wave which is a

standing wave with zero velocity.

In ~se iii) the transverse strain is again a standing wave (solution to Eq. (12b) which is identica!

to ( 10b)). This wave acts as a source term in the linear dispersive wave equation (12a) for the

longitudinal strain which can be solved by separation of variables,

In m) the wave equation for the longitudinal strain (13a) is identical to Eq. (12a). However,

the transverse strain in the source term is given by the nonliner equation ( 13b) for which we have

obtained solutions by separation of variables

(21)

yielding the differential equations

~“_c= - A(x”)” (yz~)

for the functions



Fand + -$ t, and ,\ is the scpar~tion constant. Pllasepl:~llea~lt\l!”sis ofthcintegratcd systems.

3AX2 + 1

~II_x(l–6 (X’)2

3AX2 + 1

and

l“=+ ~(T4-C2)

3

‘“ = %

(23a)

(23b)

shows blow up for A >0. (Example: For the integration constants (Cl, C2) = [1~,O we get the

rational solution

@

x-x
W’(x,t) = *

a+
(24) ) ,

For A <O bounded solutions to Eq. (13b) are found.

CONCLUSION

For the Toda lattice with atransverse degree of frWomthe dynamical eql~ations we derived

for spring elongations, which are small compared tothe lattice constant, incases of different orders

of magnitude of the ratio between the longitudinal field and the transverse field. Continuum

approximation leads to partial differential equations of improved Boussinesq type when the spring

elongation is small also compared to the Toda length parameter ( 1/b). When the longitudinal field

is small compared to the transverse field the felds decouple into a supersonic longitudinal solitary

wave and a standing transverse wave. When the two fields arc of the same order of magnitude a

hybrid wave which may be subsonic is found. (The longitudinal wave then has the character of a

“dark” compressional solitary wave). The stability of the hybrid wave is presently under

investigation, \Vhen the transverse field is largerthan the longitudinalfiei~,,wc find a standing

transverse wave acting as a source for Iincar disp~~rsivekngitudinalwavPS.The standing trans~me

wave may be nonlinear and has huen fOundby scparatiOnof variat)lcs,
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